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Abstract—A three-time level implicit scheme for the numerical solution of the multidimensional heat con-
duction equations when the thermophysical properties depend on temperature is presented. As the thermo-
physical properties are evaluated at the intermediate time level, the complication of solving a set of nonlinear
equations at each time step is avoided. In the case of boundary conditions of the first kind the method is
shown to be unconditionally stable and convergent. Boundary conditions of the second and third kind
are then dealt with in a similar way by suitably defining “equivalent thermal conductivities™.

This procedure is used to simulate several convective heating and cooling tests on “Tylose” samples
which have strongly temperature dependent thermophysical properties. Temperature fields in squares sub-
jected to boundary conditions of the second and third kind are thus computed and satisfactorily compared

with the results of the experiments.

NOMENCLATURE AL, grid spacing [m];
A,B, negative constants; Ax, Ay, grid spacing in the x, y direction [m] ;
G specific heat [J/kg K7; Ar, time step [s];
C, volumetric heat capacity [J/m*® K]; &, local order of accuracy [K/s];
I, imaginary unit; [¢,], two-dimensional column vector,
k, thermal conductivity [W/m K]; functien of time in the Fourier
0(Ax®), the remainder in Taylor series ex- expansion;
pansion and of the order (Ax®); A, root of the characteristic equation
q, heat flux [J/s]; (19);
t, temperature: solution of the heat 6, angle of inclination: cf. Fig. 1b;
conduction equations [°C]; (ud),,  difference operator:
T, temperature: solution of the numeri- ST s Th—+ h+i_ h-1
cal equations [°C]; (ud),.T" =—= 2 * = 3 ;
X,¥y,  position coordinates [m]; . 3
X.,Y, difference operators defined by equa- P ckns;ty [kg/m’];
tion (15). T, time [s].
Subscripts
Greek letters €, external;
x, convective heat transfer coefficient €q, equivalent;
[W/m?K]; i,j, lattice parameters in the two-dimen-
77,  Dositive constants [m™']; sional grid, x = iAx, y = jAy,
- difference operator: 6. T, , =T, ., X,y,7, indirection of x, y, 7.
—_ ’};, o
. diﬁerénée operator: 4.7, , =T, ;.; Superscripts
~ Ty 5 h, time level, T = hAr.
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INTRODUCTION
SEverAL finite difference methods have been
suggested for the solution of the unsteady state
heat conduction equations even for problems
involvingcomplex geometries,nonhomogeneous
materials and time dependent boundary con-
ditions [5, 11, 12]. However, when thermo-
physical properties vary with temperature, the
coefficients of the finite difference equations
may vary from one time step to the next. They
must therefore be first evaluated at a suitably
chosen average temperature so as to achieve
afterwards, by means of successive iterations, a
reasonable accuracy. Under such circumstances,
it does appear that difference methods based on
two-time levels are difficult to use computation-
ally. In fact when explicit methods are employed
the time step has to be strictly limited and the
limitation depends on the values of the thermo-
physical properties. On the other hand, when
implicit methods are tried, the resulting system
of algebraic equations to be solved at each time
step is nonlinear. Accordingly, a three-level
method has been considered here as this allows
a direct evaluation of thermophysical properties
at the intermediate time level, thus eliminating
the need of subsequent iterations. Such a pro-
cedure has been suggested by Lees for the
numerical integration of quasilinear parabolic
equations with one-dimensional geometries and
boundary conditions of the first kind [9]. The
Lees method has already been successfully
used by the authors for the solution of one-
dimensional conduction and diffusion problems,
in the case of material parameters dependent on
temperature and/or specific humidity [1, 3]. In
this paper the extension of the scheme to multi-
dimensional geometries and to boundary con-
ditions of the second and third kind is considered.
The accuracy of the procedure thus developed
is demonstrated by comparing the results of the
numerical calculations with those of several
convective heating and cooling tests. The test
material used in the experiments is “Tylose”,
a substance whose strongly temperature depen-
dent thermophysical properties are about the
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same as those of lean beef [ 13]. The information
thus obtained can therefore be immediately
applied to forecasting the thermal behaviour
of foodstuffs under refrigeration. Possible uses
of the technique herein described concern also
other applications of considerable scientific
and technical interest such as the determination
of thermal fields in materials at cryogenic
temperatures [6] and the calculation of mass
lesses in foodstuffs during refrigeration and cold
storage [2].

PROBLEM FORMULATION AND NUMERICAL
METHOD

The problem which is considered here is the
numerical solution of the quasilinear parabolic
equation typical of unsteady thermal fields in
substances with thermophysical properties de-
pendent on temperature:

pe a = div (k grad 1). (1
ar

For the sake of simplicity a two-dimensional
configuration will be examined; the numerical
scheme of the three-dimensional case however is
analogous, even though formally more compli-
cated, and is described in detail in [4]. One-
dimensional problems having been already
dealt with elsewhere [ 3] will not be treated here.

The derivation of a finite-difference formuia
for the two-dimensional case is a straightforward
extension of the Lees procedure. Referring to the
general equation (1) and to Fig. la the first
differentials of temperature with respect to
time and space coordinates are approximated
by means of the operatcrs pd and d respectively,
while on the right side of the difference equation
the average temperature:

Tho={T + T+ TISY

is used in place of 77 ..
The following dxfference equation is obtained:

C(T“ )( o1 —
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Fi6. 1. Discrete elements in a spatial mesh. (a) Internal point;
(b) surface point with a diagonal boundary.
which can be rewritten avoiding to fully indicate . 2 Ar
the functional dependences of k and C on tem- x 8ké) | T ;+ |1+ 3IC AL 6,(kd.)

perature so as to reduce the notations:

2 Ar 2 At
[1 — gméx(kéx) ~3 Kyz—ca y(ké},)]

2 Az 2 At
Tk+ 1 .
X i j l 3 A 3 "': 5x(k5x) + 3 yz ,5y(k5y) l

2 A
x T?,j + [1 + gm(sx(kéx} +

_2_ At
3AYC

X c%(kéy}] 'Iﬁ"}‘.
In order to obtain an operator on the left

side which factorizes, the fourth order terms

4 AP
9 m [5 x(k(s x)(sy(kéy)] T?’J; 1

and

4 A? -
5 C7 ax? A7 LOxKO.I0, (RO IT 5

are added respectively to the left and right side,
leading to:

2 At 2 At
[1 ~3CAS é (kéx)][l - EW 5y(k6y)]

2 Ac 2 A
h+1 __ ¢V Tt = =
T “‘[3 cax )+ 3Tap

2 Az _

where the fourth order terms added do not alter
the order of accuracy but considerably simplify
the structure of the derived formulae.

Equation (2) can be split by introducing a
temperature intermediate value T9"" " into the
two formulae:

2 Az ] w2 A
[1 3CAx? ‘Sx(k‘sx)‘ T =3can
2 At
x 5. (k) +3 Cay 5y(kay)] T
2 A 4 At
+ [1 + §m5"(k5") + SEXF
x 5:@&] 't ®3)
and
_2 A e 2 A
[1 3 C Ay? 5;-(’“5,,)]7}’1- =T " - 3 ‘CAyz
X 5y(k5y) Tf,; 1_ (3”)

The split formulae (3) and (3"} involve the
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solution of tridiagonal sets of equations along
rows and columns respectively at the first and
second half-step; therefore they represent an
alternating direction implicit method.

In a form more suitable for coding in a sym-
bolic language like, for instance, the Fortran
one, (3') and (3”) can be written as:

2 At 2 At
3CA2" 3CAX
3_2_ At

3CA2 *

cnr i

B+ 1y
i, j+1

x (k+ 4+ k- )} h+1)"‘
2 Az
{ C Ax 2[

2 At
e h D
211q+3CAﬁ

h
~Th)

1 j+1
~ k(T

x [k(T -~ T PR k;(TﬁI =T B

Th 1}

1+11
2 Az
+{Thl+3 Az[k+ 13+i

4 Az

seap s

Tth 11 ])]}

4)

2 At _
[ 3Cay, (k, +ky)}

+ b 1
i+1.7

~ k(TP = TH )] +

X(Th 1

i+1,§

T - k(T -

and:
2 AT k_ h+1
T3caR Y T

2 Az

h+1 7
T T3cap’

. 2 At
if‘;“ §(,A 2[k+ ;+1J

- ky_ (T?._i P i:ll,j)]

- _ Tk 1)
4"
where:
C=C(T:) &)
+ T

= kT, ) = k('-—b*“%_——*“) (6)

T+ T,
k] = k(T:}._%) ~ k(,.u.%_s_f:_&) (7)
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™ T"
k: = I it3 )= k(' Hh“":z—« ) (8)
T
= KT, ) (#ffw) ©)

These latter expressions too do not alter the
order of accuracy and, moreover, involve values
of temperature at grid pomnts only. Another
noteworthy feature of formulae (4) and (4”)
is that the two sets of equations to be solved at
each time step are linear since the thermophysical
properties are evaluated at the intermediate
time level: resorting to iterations within each
time interval is thus avoided.

LOCAL ACCURACY, STABILITY AND
CONVERGENCE

The local order of accuracy of the present
method, defined as the difference between the
finite difference formula (2) and the differential
equation, is obtained from a Taylor’s series
expansion of the function «x, y, 1) by using the

relationships:
e Aoy, &
)t ﬁ[é?(k'é}?)

+ 0(Ax®),

o L (k)2 ()
5y(k5y) = Ay 3y (kay>+ 24 [QVL oy,
e

— } | + O(AY®).

o/ &\
I
kﬁy( 53}’)}%

+ O(AX AP,

o (ko) = Ax? ‘i (k
? Ox

(10)

(11)

e . é
3, (kb )d (ko) = Ax2Ay? 5;{
12)

Substituting in equation (2) and rearranging,
the local accuracy can be written as:

34\h ) DA\ \*
o= A l 6_?_ _Hl_ i k_:z.((._,i)
bi 6\dv°/,, 3CLax\ ox\o7*//
41 8

d ki} %t "’+$
AT i

9C?ox



SOLUTION OF THE NONLINEAR HEAT CONDUCTION EQUATIONS

[aGesEL)
e 2 (2] (S )

a3

Ay*1 ([ @ a%) h [ o\ |
_-275{[511(;(5)’3 i,,~+ oy? kéy Wi
+....o=0AT2 + Ax? + Ay?)  (13)

if it is assumed that the derivatives of t with
respect to t, x and y are continuous up to the
order which is needed to define its principal part.

From formula (13) it follows immediately
that:

lim & =0
(A1, Ax, Ay)»0 Y

(14

at each point (i, j, h) of the domain. The three-level
scheme is therefore “consistent” with the differen-
tial equation.

The stability of formula (2) can be examined
by writing it as the two-level system:

a1-x0- Y)T:'f;.l =(X + Y)T:‘,j
+{1+ X1+ Y)V?’J.
V?,;l = T?,f
or, in vector form:
[(1 -X)l~Y) OJ[W -
0
X+Y 1+ X)(1+Y
_ [( ) L+ X)( )}[W],,
1 0
where:
2 At 2 At
X = 10 Ax =5 0 (kd ); Y~§CA 2cS(ké)(lS)
and:
[W] = [TV (16)

If the two sides of the former matrix equation
are premultiplied by the inverse of the square
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matrix on the left side, the result is:
[v‘/i,j]h+l =
X+Y 1+X)1+7Y)
1-X10-7) -0~V ([w ]
1 0
)]

The stability of the present scheme can then
be investigated by using von Neumann’s method
locally at different parts of the domain under
consideration, the coefficients being thought
of as “frozen” to fixed values in each region [11].

Therefore it is assumed that the solution of the
finite-difference system (17) can be represented
by a Fourier expansion in which separation
of space and time variables can be made. The
general nth term of this expansion can be written
as:

[¢,] exp (Iy,x) exp (I7,y)
and sinoce the analysis is applied to a region where
k is considered constant formulae (15) can be
rewritten as:

X~ 2 kAt kAT o, Y =

2 kat o,
3CAE

3CAR Y

Then using Euler’s formulae the following
relationships are derived:

X[¢,] exp Iy, x)exp (I7,)

(15)

= [¢,] exp (Iy,x) exp (I7,y)

o 8k Az in? 7, A%
T3CAR 2
Y[¢,] exp (I7,x)exp (I7,).

= [¢,] exp Iy, x) exp (I,))

8k At Ay
X(“SEAyzsm 7 )

Substituting (15”) in equation (17) the result:

A+B  (1+A4)(1+B)
[¢.]1 = (1 = A1 - B)(1 —A(1 - B)

1 0
x [¢,]*

(15")

(18)
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is obtained, where:

A — §£,.A_Es 24__yxAx
T T3cAae™ 2
and:
8k At .,y Ay
= - = — — ~L—‘
B 3CAyzsm 5

The square matrix in equation (18) is called
the amplification matrix of the system and its
characteristic equation is:

(1 — A)(1 — B)A> — (4 + B)A

—(1+A4AQ0+B=0. (19)

In order that the computational procedure
used becomes stabie, von Neumann’s condition
requires that [11]:

max |4 | <1 m=12

where A (m = 1, 2) are the eigenvalues of the
amplification matrix (18) ie. the roots of
equation (19). In [7] it has been shown that the
roots of the characteristic equation (19) satisfy
von Neumann’s condition for all values of At,
Ax, Ay and of the thermophysical properties.
This indicates unconditional stability.

The three level method is convergent too,
since the Lax equivalence theorem states that
[12]: “If the finite difference equations are con-
sistent with the differential equation, then
stability is the necessary and sufficient condition
for convergence”.

As the convergence of the scheme has been
directly established by Lees in the one-dimen-
sional case [9], the proof given here could
appear unsatisfying. However it is not so, at
least in so far as the possibility of application to
situations different from those herein explicitly
analyzed is concerned. The local order of
accuracy of a formula can in fact be immediately
determined, while if stability is usually hard to
prove a priori it is always very easy to recognize
experimentally.
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INFLUENCE OF BOUNDARY CONDITIONS

Implicit reference has been so far made to
boundary conditions of prescribed surface tem-
perature. Boundary conditions of a different
kind can however be treated in a formally
analogous manner by suitably defining “equival-
ent thermal conductivities”.

In the case of a surface with convective heat
transfer coefficient specified, the heat flux:

q=0oALT,-T, )

can be decomposed into horizontal (g,) and
vertical components (g,) which sum to g. With
reference to Fig. b this is done by writing [ 14]:

q = gsin® 6 + qcos? 6.
Then the following relationships are obtained:
q,=qsin’0 =« ALsin* (T, - T, )

AL
S sin6(T, - T, )

=k
*eq Ax

T. )

[

q, = qcos’ § = a AL cos® (T, —

AL
=k, qocosOT, — T, )

yeq Av
from which the equivalent thermal conductivities
are derived:

koo = 2 Axsin 6 (207

and
(20//)

The same procedure can be followed in the
case of a surface with heat flux specified, by
assigning the external points a “false” tempera-
ture of + 1-0°C for correct coefficient manipula-
tion [8]. Particularly, if the surface is adiabatic
the result is:

k = aAycosd.

yeq

k. =k
q

X e

= 0.

vea (21

The influence of boundary conditions which
are different from those of the first kind on the
stability of a finite difference method has been
discussed elsewhere [7] and therefore is not

covered again here. It must be pointed out
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however that the three-time level method re-
mains unconditionally stable, even with bound-
ary conditions of the second and third kind.

RESULTS

The numerical method described in the
previous sections has been coded in Fortran IV,
obtaining a program to determine two-dimen-
sional thermal fields in the square cross-section
of an infinite prism with temperature dependent
thermal properties, placed in a fluid which
produces a constant and uniform convection
coefficient over the external surface. The sym-
metry of the problem allows the simplification
of considering only one quarter of the cross-
section, with two boundaries exchanging heat
by convection while the others are kept in-
sulated.

The program has first been tested in the
particular case of constant thermophysical
properties and a unit step in the fluid tempera-
ture. The temperature at the centre, at the
surface mid-side and at the corner surface of the
sample, computed for different values of the
convection coefficient by using a grid of 11 x 11
nodal points, have been compared with the
analytical solution [10]. The accuracy of the
computations is always better than 1 per cent [4].

When the thermophysical properties depend
on temperature, no analytical solution exists
and therefore the program can be checked only
against the results of experiments.

Several heating and cooling tests in air have
then been carried out on samples with a square
cross-section, thermally insulated at the ends
in order to ensure two-dimensional heat con-
duction at the mid-length [4]. The test substance
used in the samples was “Tylose”, a water and
methylcellulose (77 per cent and 23 per cent in
weight) mixture whose thermophysical proper-
ties are strongly temperature dependent [3, 13].
The experimental apparatus and procedures
are described in [4).

The centre and the surface temperatures of
the samples have been recorded and then, with
reference to the known thermophysical prop-
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erties and linear dimensions of the samples and
to the behaviour of the air temperature, nodes
temperatures have been computed. The convec-
tive heat transfer coefficients have not been
measured but the values used gave the best fit
between experimental and computed results.

The experimental and computed curves are
reported in [4]: the difference between experi-
mental results and the results yielded by the
three-level method is less than 1 K with tem-
perature variations during tests in terms of 50 K
and over.

Run time for the Fortran program is less than
two minutes on a CDC 6600 computer with a
grid of 11x 11 nodal points and a maximum
number of 1000 time steps.

CONCLUSIONS

The finite-difference method presented in this
paper has enabled to deal with multidimensional
heat conduction problems when the thermo-
physical properties depend on temperature. The
computer procedure has been found to be
reasonably facile and accurate.

As a final remark it is worth indicating that
the extension of this work to more complex
geometrical configurations would require cnly
the additional effort of writing a computer
program flexible in region description, on the
basis, for example, of the excellent ones already
developed for standard A.D.I. methods [8].
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SOLUTION DES EQUATIONS NON LINEAIRES DE CONDUCTION THERMIQUE
PAR DES METHODES NUMERIQUES

Résumé-— On présente un schéma implicite 4 trois niveaux dans le temps pour la résolution numérique des
équations de la conduction de la chaleur quand les propriétés thermophysiques dépendent de la température.
Comme ces derniéres sont évaluées 3 ’époque intermédiaire, la compléxité de la résolution du systeme
d’équations non-linéaires 4 chaque pas dans le temps est évitée. Dans le cas des conditions aux limites de
premiére espéce, on montre que la méthode est absolument stable et convergente. Les conditions aux
limites de seconde et troisiéme espéce sont traitées de la méme maniére a 'aide de “*conductivités thermiques
équivalentes” convenablement définies.

Cette procédure est utilisée pour simuler plusieurs essais de chauffage et de refroidissement par con-
vection d’échantillons de “Tylose” qui ont des propriétés thermophysiques dépendant fortement de la
température. Des champs de température dans des carrés soumis aux conditions aux limites de seconde et

troisiéme espéce sont alors calculés et comparés de maniére satisfaisante aux résultats expérimentaux.

ZUR LOSUNG NICHTLINEARER WARMELEITUNGSGLEICHUNGEN DURCH
NUMERISCHE METHODEN

Zusammenfassung—FEin implizites Differenzenschema mit drei Zeitebenen zur numerischen Losung
mehrdimensionaler Wirmeleitungsgleichungen mit temperaturabhingigen thermophysikalischen Eigen-
schaften wird beschrieben. Da die thermoplastischen Eigenschaften bei der mittleren Zeitebene genommen
werden, wird die Schwierigkeit umgangen, bei jedem Zeitschritt einen Satz nichtlinearer Gleichungen
16sen zu miissen. Fir die Randbedingungen erster Art zeigt es sich, dass die Methode in jedem Fall stabil
und konvergent ist. Randbedingungen zweiter und dritter Art werden &hnlich behandelt, indem in ge-
eigneter Weise “‘dquivalente Wirmeleitfihigkeiten” definiert werden.

Dieses Verfahren wird angewendet, um verschiedene konvektive Aufheiz- und Kiihlvorginge an
“Tylose”-Proben zu simulieren, die stark temperaturabhingige thermophysikalische Eigenschaften
haben. Temperaturfelder in Vierkantprismen bei Randbedingungen zweiter und dritter Art werden auf

diese Weise berechnet. Sie stimmen in befriedigender Weise mit experimentellen Ergebnissen iiberein.

O PEHIEHUY HEJAUHENHLIX VPABHEHHUN TEIVICIIPOBOJAHOCTH
YUCJEHHBIMII METOJAMUI

Anporanua—OnuuceHBaeTca TPexCHOHHAA HEeABHAH CXeMa YMCJIeHHOTO PpelieHUs MHOIO-
MepHLX YPABHEHWH TeIIONPOBOJHOCTH, KOTHA Tennodmsmyeckue CBOHCTBA RABUCAT OT
Temneparyps. IOCKONBKY TelIofhuaNIecHe CBOMCTBA PACCHHTHIBAIOTCH JUIA HMPOMEMKYTOY-
HOTO CJIOA, BTO TIO3BOJAET M30emaTh 3ATPYTHEHUR NPH pPeleHUy CACTEMBl HeNMHEeHHBIX
ypaBHEHHH HA KoM ware no Bpemerny. llokasamo, ¥re B Ciayyae TPAHMYHEIX yCNOBUH
[epBOro pofia DTOT METOX A3ET YCTOMYMBYIO CXORMMOCTH DPe3YJLTATOB. 3aTeM, ONpeRenus
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COOTBETCTBYIOLIMM 0GPasOM «SKBUBAMEHTHYI0 TEMJIONPOBOXHOCTBY, PACCMATPUBAIOT I'paHMY-
HHle YCIAOBHA BTOPOTO M TPETHErO POAA.
OTO METOJ HMCHOJL30BAJCH JJIA MOJENUPOBAHNA KOHBEKTUBHOIO HarpeBa Ha o0pasiax
«THIIOBHDy, TeIIoPusndecKue CBOMCTBA KOTOPON CHUIIBHO 3aBHMCAT OT TEMIIEPATyPH.
Taxkum 06pasoM pacCYMTAHEL TEMIEPATYPHHE IOJA B TejJaxX KBajpaTHON (QOpPMHI IpH
FPAaHUYHHIX YCIIOBUAX BTOPOrOo H TPETHETO POJA ; CPABHEHME C 9KCIEPHMEHTOM IOKAa3HIBAET
VIOBIAETBOPUTEILHOE COBIAIEHHE.
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