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Abstract--A three-time level implicit scheme for the numerical solution of the multidimensional heat con- 
duction equations when the thermophysicai properties depend on temperature is presented. As the thermo- 
physical properties are evaluated at the intermediate time level, thecomplication of solving a set ofnonlinear 
equations at each time step is avoided. In the base of boundary conditions of the first kind the method is 
shown to be unconditionally stable and convergent. Boundary conditions of tire second and third kind 
are then dealt with in a similar way by suitably defining “equivalent thermal conductivities”. 

This procedure is used to simulate several convective heating and cooling tests on “Tylose” samples 
which have strongly temperature dependent the~ophysical properties. Temperature fields in squares sub- 
jected to boundary conditions of the second and third kind are thus computed and satisfactorily compared 

with the results of the experiments. 

NOMENCLATURE 

negative constants; 
specific heat [J/kg Kf ; 
volumetric heat capacity [J./m3 K] ; 
imaginary unit; 
thermal conductivity [W/m KJ; 
the remainder in Taylor series ex- 
pansion and of the order (AZ@); 
heat flux [J/s] ; 
temperature: solution of the heat 
conduction equations [“Cl; 
temperature: solution of the numeri- 
cal equations PC] ; 
position coordinates [m]; 
difference operators defined by equa- 
tion (15). 

Greek letters 
a, convective heat transfer coefficient 

[W/m’ K] ; 
Y,, “?y1 positive constants [m-r]; 
6 X’ difference operator: SXq, j = q j+ t 

6 
- T&; 

Y’ 
difference operator: “,,q, j = T++ j 
- T-+,j; 

grid spacing [m] ; 
grid spacing in the X, y direction [m] ; 
time step [s]; 
local order of accuracy [K/s] ; 
two-dimensional column vector, 
function of time in the Fourier 
expansion; 
root of the characteristic equation 
(19); 
angle of inclination: cf. Fig. lb; 
difference operator: 

6 T”+t + 6 Th-3 
z 

Th+l _ Th-’ 
= / = 2 ; 

density [kg/m31 ; 
time [s]. 

external; 
equivalent; 
lattice par~ete~ in the two-dimen- 
sional grid, x = idx, y = jdy; 

in direction of x, y, r. 

Superscripts 
h, time level, r = h AZ. 
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INTRODUCTION 

SEVERAL finite difference methods have been 
suggested for the solution of the unsteady state 
heat conduction equations even for problems 
involvingcomplexgeometries,nonhomogeneous 
materials and time dependent boundary con- 
ditions [S, 11, 121. However, when thermo- 
physical properties vary with temperature, the 
coefficients of the finite difference equations 
may vary from one time step to the next. They 
must therefore be first evaluated at a suitably 
chosen average temperature so as to achieve 
afterwards, by means of successive iterations, a 
reasonable accuracy. Under such circumstances, 
it does appear that difference methods based on 
two-time levels are difficult to use computation- 
ally. In fact when explicit methods are employed 
the time step has to be strictly limited and the 
limitation depends on the values cf the thermo- 
physical properties. On the other hand, when 
implicit methods are tried, the resulting system 
of algebraic equations to be solved at each time 
step is nonlinear. Accordingly, a three-level 
method has been considered here as this allows 
a direct evaluation of thermophysical properties 
at the intermediate time level, thus eliminating 
the need of subsequent iterations. Such a pro- 
cedure has been suggested by Lees for the 
numerical integration of quasilinear parabolic 
equations with one-dimensional geometries and 
boundary conditions of the first kind [9]. The 
Lees method has already been successfully 
used by the authors for the solution of one- 
dimensional conduction and diffusion problems, 
in the case of material parameters dependent on 
temperature and/or specific humidity Cl, 3 3. In 
this paper the extension of the scheme to multi- 
dimensional geometries and to boundary con- 
ditions of the second and third kind is considered. 
The accuracy of the procedure thus developed 
is demonstrate by comparing the results of the 
numerical calcuiations with those of several 
convective heating and cooling tests. The test 
material used in the experiments is “Tylose”. 
a substance whose strongly temperature depen- 
dent thermophysical properties are about the 

same as those 3f lean beef [13]. The information 
thus obtained can therefore be immediately 
applied to forecasting the thermal behaviour 
of foodstuffs under refrigeration. Possible uses 
of the technique herein described concern also 
other applications of considerable scientific 
and technical interest such as the determination 
of thermal fields in materials at cryogenic 
temperatures [6] and the calculation of mass 
lcsses in foodstuffs during refrigeration and cold 
storage [2]. 

PROBLEM FORMULATION AND NUMERICAL 
METHOD 

The problem which is considered here is the 
numerical solution of the quasilinear parabolic 
equation typical of unsteady thermal fields in 
substances with thermophysical properties de- 
pendent on temperature: 

pc g = div (k grad t). (1) 

For the sake of simplicity a two-dimensional 
configuration will be examined; the numerica 
scheme of the three-dimensional case however is 
analogous, even though formally more compli- 
cated, and is described in detail in [4]. One- 
dimensional problems having been already 
dealt with elsewhere [3] will not be treated here. 

The derivation of a finite-difference formula 
for the two-dimensional case is a straightforward 
extension of the Lees procedure. Referring to the 
general equation (1) and to Fig. la the first 
differentials of temperature with respect to 
time and space coordinates are approximated 
by means of the operatcrs ,u6 and 6 respectively, 
while on the right side of the difference equation 
the average temperature: 

Y?! = q7y + T;,,j + 7y) r,.l 3 

is used in place of e, j. 
The following difference equation is obtained : 
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FIG. 1. Discrete elements in a spatial mesh. (a) Internal point; 
(b) surface point with a diagonal boundary. 

which can be rewritten avoiding to fully indicate 
the functional dependences of k and C on tem- 
perature so as to reduce the notations: 

x iS,,(kcYJ I Tfj ‘. 

In order to obtain an operator on the left 
side which factorizes, the fourth order terms 

4 822 

9 C2 Ax2 Ay2 [“x(k&)~y(kQIT:; ’ 

and 

are added respectively to the left and right side, 
leading to : 

1 

where the fourth order terms added do not alter 
the order of accuracy but considerably simplify 
the structure of the derived formulae. 

Equation (2) can be split by ~troduc~g a 
temperature intermediate value q!,? lr into the 
two formulae: 

4 Az $ & &(k~,) -I- - z 3CAy 

x 6,,(kS,,) 
1 

e,;” (3’) 

and 

1 
2 AZ 

- 
;jc 

6,(k,+) 3 7’;; l= q$+ l)* - 2 -i??-- 
3 CAy2 

(3”) 

The split formulae (3’) and (3”) involve the 
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solution of tridiagonal sets of equations along 
rows and columns respectively at the first and 
second half-step; therefore they represent an 
alternating direction implicit method. 

In a form more suitable for coding in a sym- 
bolic language like, for instance, the Fortran 
one, (3’) and (3”) can be written as: 

x (k; f k;) k’E!“t”’ 
3CAX2 X I.J+l 

- 7-f j) , 

These latter expressions too do not alter the 
order of accuracy and, moreover, involve values 
of temperature at grid pomts only. Another 
noteworthy feature of formulae (4’) and (4”) 
is that the two sets of equations to be solved at 
each time step are linear since the thermophysica~ 
properties are evaluated at the intermediate 
time level: resorting to iterations within each 
time interval is thus avoided. 

- k;(T!’ - T;,j_l) I + .L!%!-- LOCAL ACCURACY, STABILITY AND 
bj 3CAy2 CONVERGENCE 

The local order of accuracy of the present 

’ [kJ7(T!+ I, j - TF,j) - kri(TF,j - TV-,,j)]) method, defined as the difference between the 
finite difference formula (2) and the differential 

- T;;‘f equation, is obtained from a Taylor’s series 
expansion of the function t(x, y, r) by using the 

- k;(T?‘-’ I. j - CI:, j)I (4”) 
where : 

Substituting in equation (2) and rearranging, 
the local accuracy can be written as: 

c = c(z-;J (5) 

k: = k(T&) rz k T!$ i+1 + 

2 
(6) 
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+ . . . . = O(Alz’ + Ax2 + Ay’) (13) 

if it is assumed that the derivatives of t with 
respect to z, x and y are continuous up to the 
order which is needed to define its principal part. 

From formula (13) it follows immediately 
that: 

lim 
(AT, Ax, Ad-r0 

arj=o 
’ 

(14) 

at each point (i,j, h) of the domain. The three-level 
scheme is therefore “consistent” with thedifferen- 
tial equation. 

The stability of formula (2) can be examined 
by writing it as the two-level system: 

matrix on the left side, the result is: 

[Y, jl A+1 = 

x+y (1 + X)(1 + Y) 

-X)(1 - Y) (1 - X)(1 - Y) pKj]! 
1 0 I 

The stability of the present scheme can then 
be investigated by using von Neumann’s method 
locally at different parts of the domain under 
consideration, the coefficients being thought 
of as “frozen” to fixed values in each region [l l]. 

Therefore it is assumed that the solution of the 
finite-difference system (17) can be represented 
by a Fourier expansion in which separation 
of space and time variables can be made. The 
general nth term of this expansion can be written 
as: 

Cat,] exp UY,~) exp (I*J,y) 

and since the analysis is applied to a region where 
k is considered constant formulae (15) can be 
rewritten as: 

(1 - X) (1 - Y)T;,;’ = (X + Y)?, j x,4 kAr 62. 
3CAx’ X’ 

y-2 kAz 62 
=3CAy2 y’ (15’) 

+ (1 -t X)(1 + Y)VfVj 

I??’ = T! 
Then using Euler’s formulae the following 

1.1 1.l relationships are derived: 
or, in vector form: 

XW,] exp (fyXx) exp (0,~) 

[ (1 -X)(1 - Y) 0 0 1 CWI”” 1 

(x+ Y) (l-l-X)(1+ Y) 
=I: I 

1 0 
1 PI” 

where : 

2 Ar 
X=- 3 m dx(k6J; Y = 2 -__f!?- 6 (k$) 

3CAy2 y 
(15) 

and: 

[W] = [K V]‘. (W 

If the two sides of the former matrix equation 
are premultiplied by the inverse of the square 

= i3,l exp (hp4 exp (lyyy) 

X 

Y C#,l ev (0,x) exp (O,y).~ 
= C43 exp (IY~x) exp (fyy~) 

(1s’) 

X 
c 

8 k AT sin2 y,.dy 
- --2 

\ 3CAy > 2 - 

Substituting (15”) in equation (17) the result: 

A+B (l+A)(l+B) 

[+Jh” = - A)(1 - B)(l - A)(1 - 23) 

1 0 1 x E&l” W 
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is obtained, where: 

A = _ 8ki\rsin2&A.? 
3CAx2 2 

and : 

The square matrix in equation (18) is called 
the amplification matrix of the system and its 
characteristic equation is: 

(1 - A)(1 - B)A2 - (A + B)A 

-(l+A)(l+B)=O. (19) 

In order that the computational procedure 
used becomes stable, von Neumann’s condition 
requires that [ 11 J : 

max)&l d 1 (m = 1,2) 

where l,,, (m = 1, 2) are the eigenvalues of the 
amplification matrix (18) i.e. the roots of 
equation (19). In [7] it has been shown that the 
roots of the characteristic equation (19) satisfy 
von Neumann’s condition for all values of AZ, 
Ax, Ay and of the thermophysical properties. 
This indicates unconditional stability. 

The three level method is convergent too, 
since the Lax equivalence theorem states that 
[ 123 : “If the finite difference equations are con- 
sistent with the differential equation, then 
stability is the necessary and sufficient condition 
for convergence”. 

As the convergence of the scheme has been 
directly established by Lees in the one-dimen- 
sional case [9], the proof given here could 
appear unsatisfying. However it is not so, at 
least in so far as the possibility of application to 
situations different from those herein explicitly 
analyzed is concerned. The local order of 
accuracy of a formula can in fact be immediately 
determined, while if stability is usually hard to 
prove a priori it is always very easy to recognize 
experimentally. 

INFLUENCE OF BOUNDARY CONDITIONS 

Implicit reference has been so far made to 
boundary conditions of prescribed surface tem- 
perature. Boundary conditions of a different 
kind can however be treated in a formally 
analogous manner by suitably defining “equival- 
ent thermal conductivities”. 

In the case of a surface with convective heat 
transfer coefficient specified, the heat flux: 

4 = aAL(Te - T, ,) 

can be decomposed into horizontal (4,) and 
vertical components (4,) which sum to q. With 
reference to Fig. lb this is done by writing [14] : 

q = q sin’ 9 + q cos2 8. 

Then the following relationships are obtained: 

q, = q sin2 9 = a AL sin’ %(T, - Ti j) 

ZZ k 

q, = q cos’ 8 = 0: AL cos2 %(T, - Ti, J 

= k 
yeq ‘$0~ We - Ti, j) 

from which the equivalent thermal conductivities 
are derived : 

and 

k x eq = c( Ax sin % (20’) 

k B =I = aAycos0. (20”) 

The same procedure can be followed in the 
case of a surface with heat flux specified, by 
assigning the external points a “false” tempera- 
ture of + l.O”C for correct coefficient manipula- 
tion [S]. Particularly, if the surface is adiabatic 
the result is: 

k kYCq=O. = 
xeq (21) 

The influence of boundary conditions which 
are different from those of the first kind on the 
stability of a finite difference method has been 
discussed elsewhere [7] and therefore is not 
covered again here. It must be pointed out 
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however that the three-time level method re- 
mains unconditionally stable, even with bound- 
ary conditions of the second and third kind. 

RESULTS 

The numerical method described in the 
previous sections has been coded in Fortran IV, 
obtaining a program to determine two-dimen- 
sional thermal fields in the square cross-section 
of an infinite prism with temperature dependent 
thermal properties, placed in a fluid which 
produces a constant and uniform convection 
coeflicient over the external surface. The sym- 
metry of the problem allows the simplification 
of considering only one quarter of the cross- 
section, with two boundaries exchanging heat 
by convection while the others are kept in- 
sulated. 

The program has first been tested in the 
particular case of constant thermophysical 
properties and a unit step in the fluid tempera- 
ture. The temperature at the centre, at the 
surface mid-side and at the corner surface of the 
sample, computed for different values of the 
convection coefficient by using a grid of 11 x 11 
nodal points, have been compared with the 
analytical solution [lo]. The accuracy of the 
computations is always better than 1 per cent [4]. 

When the thermophysical properties depend 
on temperature, no analytical solution exists 
and therefore the program can be checked only 
against the results of experiments. 

Several heating and coohng tests in air have 
then been carried out on samples with a square 
cross-section, thermally insulated at the ends 
in order to ensure two-dimensional heat con- 
duction at the mid-length [4]_ The test substance 
used in the samples was “Tylose”, a water and 
methyiceltulose (77 per cent and 23 per cent in 
weight) mixture whose thermophysical proper- 
ties are strongly temperature dependent [3, 13-J. 
The experimental apparatus and procedures 
are described in [4]. 

The centre and the surface temperatures of 
the samples have been recorded and then, with 
reference to the known thermophysical prop- 

erties and linear dimensions of the samples and 
to the behaviour of the air temperature, nodes 
temperatures have been computed. The convec- 
tive heat transfer coefficients have not been 
measured but the values used gave the best fit 
between experimental and computed results. 

The experimental and computed curves are 
reported in [43: the difference between experi- 
mental results and the results yielded by the 
three-level method is less than 1 K with tem- 
perature variations during tests in terms of 50 K 
and over. 

Run time for the Fortran program is less than 
two minutes on a CDC 6600 computer with a 
grid of 1 I x 11 nodal points and a maximum 
number of 1000 time steps. 

CONCLUSIONS 

The finite-difference method presented in this 
paper has enabled to deal with multidimensional 
heat conduction problems when the thermo- 
physical properties depend on temperature. The 
computer procedure has been found to be 
reasonably facile and accurate. 

As a final remark it is worth indicating that 
the extension of this work to more complex 
geometrical con~gurations would require only 
the additional effort of writing a computer 
program flexible in region description, on the 
basis, for example, of the excellent ones already 
developed for standard A.D.I. methods [8]. 
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SOLUTION DES EQUATIONS NON LINEAIRES DE CONDUCTION THERMIQUE 
PAR DES METHODES NUMERIQUES 

R&II&-- On prisente un schirma implicite & trois niveaux dans Ie temps pour la r&solution numkrique des 
tquations de la conduction de la chaleur quand les prop&t& the~ophysiques d&pendent de la tempCrature. 
Comme ces derni&res sont tvaIu&es & I’Bpoque inte~~~~re, la comp%xit& de la r&solution du systhme 
d’Cquations non-lin&ires & chaque pas dans le temps est &it&e. Dans le cas des conditions aux limites de 
premi&re espbce, on montre que la mbthode est absoiument stable et convergente. Les conditions aux 
limites de seconde et troisi&me esp& sont trait& de la m&e man&e B I’aide de “conductivit&s thermiques 
equivalentes” convenablement dkfinies. 

Cette prockdure est utilide pour simuler plusieurs essais de chauffage et de refroidissement par con- 
vection d’6chantillons de “Tylose” qui ont des prop&t& thermophysiques d&pendant fortement de la 
temp&rature. Des champs de temp&rature dans des carrts soumis aux conditions aux limites de seconde et 

troisibme esp&e sont alors calculCs et compares de man&e satisfaisante aux r&.ultats exp6rimentaux. 

ZUR LOSUNG NICHTLIN~A~R W~RMELEITUNGS~L~IC~UNGEN DURCH 
NUM~RISCHE METHODEN 

Zusumm~nf~sung-Ein implizites Differenzenschema mit drei Zeitebenen zur numerischen Lijsung 
mehrdimensionaler Wlrmeieitungsgleichungen mit temperaturabhi&&&n thermophysikaliachen Eigen- 
schaften wird beschrieben. Da die thermoplastischen Eigenschaften bei der mittlereo Zeitebene genommen 
werden, wird die Schwierigkeit umgangen, bei jedem Zeitschritt einen Satz nichtlinearer Gleichungen 
l&en zu mtissen. Fiir die Randbedingungen erster Art zeigt es sich, dass die Methode in jedem Fall stabil 
und konvergent ist. Randbedingungen zweiter und dritter Art werden iihnlich behandelt, indem in ge- 
eigneter Weise ‘Xquivalente W%rmeleitfahigkeiten” detiniert werden. 

Dieses Verfahren wird angewendet, urn verschiedene konvektive Aufheiz- und Kiihlvorg&nge an 
“Tylose’‘-Proben zu simulieren, die stark temperaturabhbgige thermophysikalische Eigenschaften 
haben. Temperaturfelder in Vierkantprismen bei Randbedingungen zweiter und dritter Art werden auf 

diese Weise berechnet. Sie stimmen in befriedigender Weise mit experimentellen Ergebnissen iiberein. 

0 PEIiIEHBEl HE~~HE~~bI~ YPABHEHklm TEIIJIOIlPOBOfiHOCTM 
YBCJIEHHbIMM METOAAMI4 

AEriOTall~sr-OnllCbIBaeTcR TpeXCJIofiHafI HeHBHaH cxeMa ‘I5icJleHHoro pemeHMff hlHoro- 

MepHblX YpaBHeHEld TeIIJIOIlpOBO~HOC’II’I, Korna TeIIno$man’IecI~Ke CBOtiCTBa BBBMCHT 01' 

TeMIIepaTypbI. nOCKOfibI%y TeIIJIO@SKSeCIFIe CBOftCTBa paCC9HTbIBaH)TCH AnH I’IpOMe~yTO’I- 
HOI?0 C310R, 3TO n03nozfleT n36eHtaTb 3aTpy~HeHHm npIl pemeHlna CMCTeME.1 HeJIaHenHbIx 
ypau,aes& Ha KaxgoM mare no speweaa. nOHa3aH0, 9TO H UIyqae I’paHHYHbIX yCSIOBHfi 
IIepBOrO pO$@ 3TOT MeTOE AaeT yCTOi@iHRyIo CXOAHMOCTb pe3yZbPaTOB. SaTeM, onpeEenl?H 
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COOTBeTCTBYloIQHM obpaaom <<8KBMBaJleHTHJ'IO TellJlOIlpOBO~HOCTbV, paCCMaTpHBEUOT I'pWIFI- 

HbIe J'CJIOBEH BTOpOrO EI TpeTbWO POAa. 

3TO MeTOH IlClIOJlb30BaJlCfI ~JlH MO~f2lHpOBaHHR KOHBf2KTHBHOl'O HWpeBa Ha o6pasqax 
((THn03bI)),TennO~K3aseCKHe CBOtiCTBa KOTOPOti CAJIbHO BBBHCRT OT Tt?MJIt?pZlTJ'pbI. 

TaKHM o6paaoM pWCWiTaHbl TeMIIepaTypHbIe IIOJIR B TWIaX KBa~paTHOi CjOpMbl Ilpll 

I'PaHHYHbIX JWIOBIlRX BTOPOPO H TpeTbWO PO&S; CpaBHeHAe C 'c-)KCIIepIlMeHTOM IIOKEl3bIBaeT 

y~OBJleTBOpHTWlbHOe COBIlaWHlie. 


